skip to main content


Search for: All records

Creators/Authors contains: "Naylor, Gavin J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species 1–4 . To address this issue, the international Genome 10K (G10K) consortium 5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences. 
    more » « less
  2. Abstract

    The boom of massive parallel sequencing (MPS) technology and its applications in conservation of natural and managed populations brings new opportunities and challenges to meet the scientific questions that can be addressed. Genomic conservation offers a wide range of approaches and analytical techniques, with their respective strengths and weaknesses that rely on several implicit assumptions. However, finding the most suitable approaches and analysis regarding our scientific question are often difficult and time‐consuming. To address this gap, a recent workshop entitled ‘ConGen 2015’ was held at Montana University in order to bring together the knowledge accumulated in this field and to provide training in conceptual and practical aspects of data analysis applied to the field of conservation and evolutionary genomics. Here, we summarize the expertise yield by each instructor that has led us to consider the importance of keeping in mind the scientific question from sampling to management practices along with the selection of appropriate genomics tools and bioinformatics challenges.

     
    more » « less